III. STRATOSPHERIC OZONE DEPLETION

Q11: How severe is the depletion of the Antarctic ozone layer?

Severe depletion of the Antarctic ozone layer was first observed in the early 1980s. Antarctic ozone depletion is seasonal, occurring primarily in late winter and early spring (August-November). Peak depletion occurs in early October when ozone is often completely destroyed over a range of altitudes, reducing overhead total ozone by as much as two-thirds at some locations. This severe depletion creates the "ozone hole" in images of Antarctic total ozone made from space. In most years the maximum area of the ozone hole far exceeds the size of the Antarctic continent.

The severe depletion of Antarctic ozone, known as the "ozone hole," was first observed in the early 1980s. The depletion is attributable to chemical destruction by reactive halogen gases, which increased in the stratosphere in the latter half of the 20th century (see Q16). Conditions in the Antarctic winter stratosphere are highly suitable for ozone depletion because of (1) the long periods of extremely low temperatures, which promote polar stratospheric cloud (PSC) formation; (2) the abundance of reactive halogen gases, which chemically destroy ozone; and (3) the isolation of stratospheric air during the winter, which allows time for chemical destruction to occur (see Q10). The severity of Antarctic ozone depletion can be seen using satellite observations of total ozone, ozone altitude profiles, and long-term average values of polar total ozone.

Antarctic ozone hole. The most widely used images of Antarctic ozone depletion are those from space-based measurements of total ozone. Satellite images made during Antarctic winter and spring show a large region centered near the South Pole in which total ozone is highly depleted (see Figure Q11-1). This region has come to be called the "ozone hole" because of the near-circular contours of low ozone values in the images. The area of the ozone hole is defined here as the area contained within the 220-Dobson unit (DU) contour in total ozone maps (light blue color in Figure Q11-1). The maximum area has reached 25 million square kilometers (about 10 million square miles) in recent years, which is nearly twice the area of the Antarctic continent (see Figure Q11-2). Minimum values of total ozone inside the ozone hole averaged in late September have reached below 100 DU, which is well below normal springtime values of about 200 DU (see Figure Q11-2).

Altitude profiles of Antarctic ozone. Ozone within the "ozone hole" is also measured using balloonborne instruments (see Q5). Balloon measurements show changes within the ozone layer, the vertical region that contains the highest ozone abundances in the stratosphere. At geographic locations where the lowest total ozone

values occur in ozone hole images, balloon measurements show that the chemical destruction of ozone is complete over a vertical region of several kilometers. Balloon

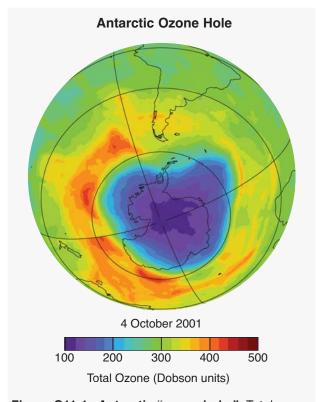


Figure Q11-1. Antarctic "ozone hole." Total ozone values are shown for high southern latitudes as measured by a satellite instrument. The dark blue and purple regions over the Antarctic continent show the severe ozone depletion or "ozone hole" now found during every spring. Minimum values of total ozone inside the ozone hole are close to 100 Dobson units (DU) compared with normal springtime values of about 200 DU (see Q4). In late spring or early summer (November-December) the ozone hole disappears in satellite images as ozone-depleted air is displaced and mixed with ozone-rich air transported poleward from outside the ozone hole.

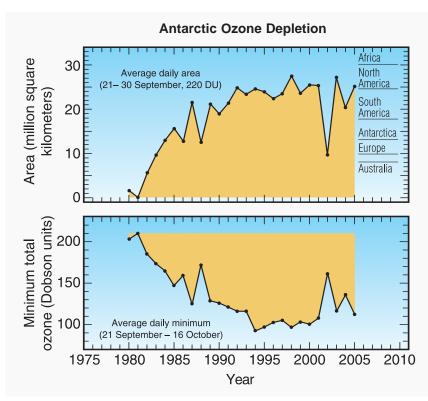


Figure Q11-2. Antarctic ozone hole features. Values are shown for key parameters of the Antarctic ozone hole: the area enclosed by the 220-DU total ozone contour and the minimum total ozone amount, as determined from space-based observations. The values are averaged for each year near the peak of ozone depletion, as defined by the dates shown in each panel. The ozone hole areas are contrasted to the areas of continents in the upper panel. The intensity of ozone depletion gradually increased beginning in 1980. In the 1990s, the depletion reached fairly steady values, except for the anomalously low depletion in 2002 (see Figure Q11-box). The intensity of Antarctic ozone depletion will decrease as part of the ozone recovery process (see Q19 and Q20).

measurements shown in Figure Q11-3 give an example of such depletion over South Pole, Antarctica, on 2 October 2001. The altitude region of total depletion (14-20 kilometers) in the profile corresponds to the region of lowest winter temperatures and highest chlorine monoxide (ClO) abundances. The average South Pole ozone profiles for the decades 1962-1971 and 1992-2001 (see Figure Q11-3) show how reactive halogen gases have dramatically altered the ozone layer. For the 1960s, the ozone layer is clearly evident in the October average profile and has a peak near 16 kilometers. For the 1990s, minimum average values in the center of the layer have fallen by 90% from the earlier values.

Long-term total ozone changes. Low winter temperatures and isolated conditions occur each year in the Antarctic stratosphere, but significant spring ozone depletion has been observed every year only since the early 1980s. In prior years, the amounts of reactive halogen gases in the stratosphere were insufficient to cause significant depletion. Satellite observations can be used to examine how ozone depletion has changed with time in both polar regions for the last three decades. Changes in ozone hole areas and minimum Antarctic ozone amounts are shown in Figure Q11-2. Depletion has increased since 1980 to become fairly stable in the 1990s and early 2000s, with the exception of 2002 (see Q11-box). Total ozone

averaged over the Antarctic region in late winter/early spring shows similar features (Figure Q12-1). Average values decreased steadily through the 1980s and 1990s, reaching minimum values that were 37% less than in preozone-hole years (1970-1982). The year-to-year changes in the average values reflect variations in the meteorological conditions, which affect the extent of low polar temperatures and the transport of air into and out of the Antarctic winter stratosphere (see Figure Q11-box). However, essentially all of the ozone depletion in the Antarctic in most years is attributable to chemical loss from reactive halogen gases.

Restoring ozone in spring. The depletion of Antarctic ozone occurs primarily in the late winter/early spring season. In spring, temperatures in the lower polar stratosphere eventually warm, thereby ending PSC formation as well as the most effective chemical cycles that destroy ozone (see Q10). The transport of air between the polar stratosphere and lower latitudes also increases during this time, ending winter isolation. This allows ozone-rich air to be transported to polar regions, displacing air in which ozone has been severely depleted. This displaced air is mixed at lower latitudes with more abundant ozone-rich air. As a result, the ozone hole disappears by December and Antarctic ozone amounts remain near normal until the next winter season.

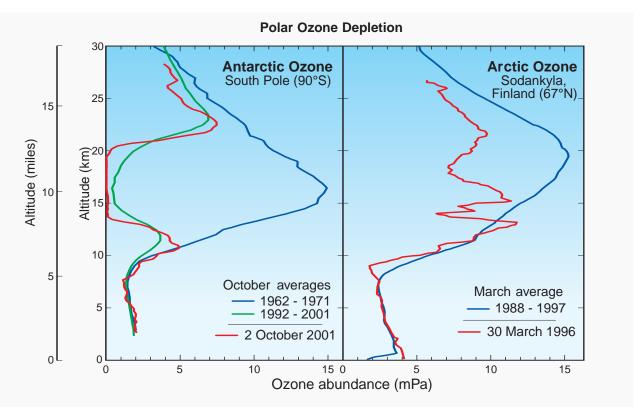
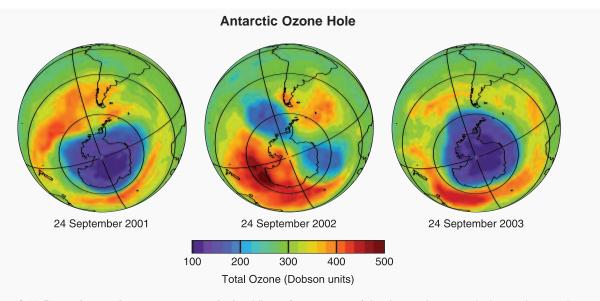


Figure Q11-3. Arctic and Antarctic ozone distribution. The stratospheric ozone layer resides between about 10 and 50 kilometers (6 to 31 miles) above Earth's surface over the globe. Long-term observations of the ozone layer with balloonborne instruments allow the winter Antarctic and Arctic regions to be compared. In the Antarctic at the South Pole, halogen gases have destroyed ozone in the ozone layer beginning in the 1980s. Before that period, the ozone layer was clearly present, as shown here using average ozone values from balloon observations made between 1962 and 1971. In more recent years, as shown here for 2 October 2001, ozone is destroyed completely between 14 and 20 kilometers (8 to 12 miles) in the Antarctic in spring. Average October values in the ozone layer now are reduced by 90% from pre-1980 values. The Arctic ozone layer is still present in spring as shown by the average March profile obtained over Finland between 1988 and 1997. However, March Arctic ozone values in some years are often below normal average values as shown here for 30 March 1996. In such years, winter minimum temperatures are generally below PSC formation temperatures for long periods. Ozone abundances are shown here with the unit "milli-Pascals" (mPa), which is a measure of absolute pressure (100 million mPa = atmospheric sea-level pressure).


The Anomalous 2002 Antarctic Ozone Hole

The 2002 Antarctic ozone hole showed features that surprised scientists. They considered it anomalous at the time because the hole had much less area as viewed from space and much less ozone depletion as measured by minimum column ozone amounts when compared with values in several preceding years (see Figure Q11-box). The 2002 ozone hole area and minimum ozone values stand out clearly in displays of the year-to-year changes in these quantities (see Figure Q11-2). The smaller area was unexpected because the conditions required to deplete ozone, namely low temperatures and available reactive halogen gases, are not expected to have large year-to-year variations. Ozone was being depleted in August and early September 2002, but the hole *broke apart* into two separate depleted regions during the last week of September. The depletion in these two regions was significantly less than was observed inside either the 2001 or 2003 ozone holes, but still substantially greater than was observed in the early 1980s.

The anomalous behavior in 2002 occurred because of specific atmospheric air motions that sometimes occur in polar regions, not large decreases in reactive chlorine and bromine amounts in the Antarctic stratosphere. The Antarctic stratosphere was warmed by very strong, large-scale weather systems in 2002 that originated in the lower atmosphere (troposphere) at midlatitudes in late September. In late September, Antarctic temperatures are generally very low (see Q10) and ozone destruction rates are near their peak values. These tropospheric systems traveled poleward and upward into the stratosphere, upsetting the circumpolar wind flow and warming the lower stratosphere where ozone depletion was ongoing. The higher-than-normal impact of these weather disturbances during the critical time period for ozone loss reduced the total loss of ozone in 2002.

The warming in 2002 was unprecedented in Antarctic meteorological observations. Warming events are difficult to predict because of their complex formation conditions.

Large Antarctic ozone depletion returned in 2003 through 2005, in a manner similar to that observed from the mid-1990s to 2001 (see Figures Q11-box and Q11-2). The high ozone depletion found since the mid-1990s, with the exception of 2002, is expected to be typical of coming years. A significant, sustained reduction of Antarctic ozone depletion, defined as ozone recovery, requires the removal of halogen source gases from the stratosphere (see Q19 and Q20).

Figure Q11-Box. Anomalous 2002 ozone hole. Views from space of the Antarctic ozone hole as observed on 24 September in each of three consecutive years. The hole split and elongated in 2002, reducing the total depletion of ozone observed that year in comparison with 2001 and 2003. The anomalous depletion in 2002 is attributable to an early warming of the polar stratosphere caused by air disturbances originating in midlatitudes, rather than to large changes in the amounts of reactive chlorine and bromine in the Antarctic stratosphere.